
ROS AND UNITY
A COMPREHENSIVE INTRODUCTION

Danial Bagheri
Supervisor: Sebastian Starke

1

Content:
Ø ROS

§ Introduction
§ What uses ROS at the moment?
§ Peripheral units
§ What make ROS outstanding?

§ Core modules
§ Standard Message Definitions
§ Robot Geometry Library
§ ROS visualizer (RVIZ)
§ Robot Description Language (URDF)

§ Side modules
§ GAZEBO
§ MoveIt
§ OpenCV
§ Arduino

§ How ROS works
§ Publisher- subscriber Topic-

Message
§ Service-client

Ø Unity Introduction

Ø Unity with ROS

Ø Stand alone Unity

2

ROS : Introduction[1]

Ø ROS stands for Robot Operating System . Collection of tools, libraries, and conventions
to simplify the task of creating robot across a wide variety of robotic platforms. [1]

Ø Stablishing and controlling communication between peripheral modules of a robot :
sensors, cameras , physical fingers and etc. [1]

Ø ROS started at Stanford Artificial Intelligence Lab then further developed at Willow
Garage. [2]

Ø ROS is fully functional on Ubuntu and partially functional on other OS like Windows or
Mac[5]

Ø ROS is open source Therefore[5]:
§ It is free
§ There is a large community of contributors. You can be one of them.
http://wiki.ros.org/

3

[3 - Willow Garage http://www.willowgarage.com/pages/software/ros-platform]

[1]

[3]

[4]

[5]

[4 - Ubuntu - The Ubuntu stacked logo http://design.ubuntu.com/brand/ubuntu-logo]

[5 – Wiki.ros.org - Introduction- http://wiki.ros.org/ROS/Introduction]

[1 - Powering the world’s Robots- ROS.ORG- http://www.ros.org/]

[2 - Powering the world’s Robots- ROS.ORG - History http://www.ros.org/history]

What uses ROS at the moment? [1]

Ø Almost all robots you have seen in Academic and to some extend in industry.

Ø Humanoid Robots : Nao®, GeRo®, Robonaut 2, ROBOTIS Thormang3, REEM® , …

Ø Manipulators: Barrett WAM ®, Baxter®, …

Ø Multi-fingered graspers : BarrettHand® , shadowHand, ..

Ø Intelligent vehicles : quadrotor helicopters, Autonomous cars , …

4

[3 – Robotnic – BARRETT WAM - http://www.robotnik.eu/robotics-arms/barrett-wam/]

[4 - ROS Spotlight: Pal Robotics' REEM-C http://www.ros.org/news/2013/12/ros-spotlight-pal-robotics-reem-c.html]

[5 – German robot - Opensource humanoid robot http://www.german-robot.com/]

[1 - Powering the world’s Robots- ROS.ORG – Robots - http://wiki.ros.org/Robots]

[2 – Pullman Academic – Baxter robot- http://www.pullmanacademic.com.au/Products_Robotics_Baxter.html]

[2] [3] [4] [5] [6]

[7]

[6 – Generation Robotics –NAO - https://www.generationrobots.com/en/401617-programmable-humanoid-
nao-evolution-robot-red.html]

[7 –Shadow Robot Company – Shadowhand -https://www.shadowrobot.com/products/dexterous-hand]

[8 – Barrett Technologies - http://www.barrett.com/products-hand.htm]

[8]

Peripheral units[1]

Ø 1D range finders : TeraRanger, Sharp IR range finder

Ø 2D range finders : SICK LMS2xx lasers, Leuze rotoScan lase

Ø 3D Sensors : DUO3D™ stereo camera, Kinect, PMD Camcube 3.0, …

Ø Cameras : USB Cameras , Ethernet camera, ….
Ø Force/Torque/Touch Sensors: ATI f/t sensors, Nano17 6-axis, …

Ø Motion Capture: OptiTrack, VICON, LEAP Motion , …

Ø Pose Estimation (GPS/IMU) : BOSCH® IMU, Razor's® IMU, …

Ø RFID : UHF RFID Reader

5

[2]

[3] [4]

[5]

[8]

[6]

[7]

[3 – Drexel University- SICK LMS200 tutorial - http://www.pages.drexel.edu/~kws23/tutorials/sick/sick.html

[4 - Digital-circuitry : SICK LMS-200 / LMS-291 LIDAR LASER SCANNER RS-232 INTERFACING WITH UBUNTU &
R.O.S. - http://www.digital-circuitry.com/Wordpress/sick-lms-200-lidar-laser-scanner-interfacing-with-ubuntu/]

[5 – Microsoft –Kinect for Xbox 360 - http://www.xbox.com/en-US/xbox 360/accessories/kinect]

[1 - Powering the world’s Robots- ROS.ORG – Sensors - http://wiki.ros.org/Sensors]

[2 – TeraRanger One - http://www.teraranger.com/product/teraranger-one-distance-sensor-for-drones-and-robotics/]

[6 – Bosch – Mobility sensors SMI130 SMG130 SMA 130- http://www.bosch-
semiconductors.de/en/automotive_electronics/news_4/ces/ces_1.html]
[7 – 9 Degrees of Freedom - Razor IMU - https://www.sparkfun.com/products/retired/10736]

[8 – ATI Industrial Automation - Multi-Axis Force / Torque Sensors- http://www.ati-ia.com/products/ft/sensors.aspx]

What make ROS outstanding?
Ø ROS is completely modular :

Ø Packages : A collection of Nodes, Messages , services.
§ Nodes: a process that uses ROS framework
§ Messages: Standard definition for passing information between nodes.

Ø Stack: Set of multiple package

Ø ROS is multi-language:
Ø C++ : full functionality with ROSCPP library
Ø Python : full functionality with ROSPY library
Ø JAVA, LISP, Octave, LUA : experimental development.

Ø Large set of tools out of box :Standard Robot Messages, Robot Description
Language, pose estimation, localization in a map, building a map, and even mobile
navigation.

Ø Integration with other libraries for: Simulation, Image processing and etc.

6

Powerful ROS libraries
Ø Standard Message Definitions

For Each peripheral module or concept

code compatibility with all other part of the
robotic eco system.

categorized by types in different packages.

Package : geometry_msgs
§ Message Types available in this package:

§ Point
§ Pose
§ Transform
§ …

Ø Example of a message structure:
§ Package : sensor_msgs
§ Message Type : Imu

std_msgs/Header header
geometry_msgs/Quaternion orientation
float64[9] orientation_ covariance
geometry_msgs/Vector3 angular_velocity
float64[9] angular_veloci ty_covariance
geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance

7

Powerful ROS libraries
Ø Robot Geometry Library

This is essential to keep track of position of each part of robot ,
regarding to the other parts. where is the hand, in respect to
the head ? Where is robot1 regarding to the hand of robot2 ?

§ Transform library (TF) is a core library of ROS and provides
a coordinate tracking system.

§ TF is not a centralized library

§ works base on publisher/subscriber messaging system of
ROS.

Every node has :
§ Publisher (user needs to write)
§ Listener (user needs to write)

Ø TF listeners listen to the frames and
provides a Tree which describes how
coordinate systems are related to each
other.

/map

/robot1/odom

/robot1/base

/robot1/laser /robot1/camera /robot2/laser /robot2/camera

/robot2/odom

/robot2/base

8

[1]

[1 - ROS.ORG – Robot Geometry Library - http://www.ros.org/core-components/]

[2]

[2 – TF ROS tutorial - https://www.youtube.com/watch?v=Xf25dVrG5ks]

Powerful ROS libraries
Ø ROS visualizer (RVIZ)

§ RVIZ is the default 3D visualization tool for.
§ RVIZ is not a ”simulator”.
§ RVIZ can show data that it has a plugin for

displaying (DisplayTypes) and has been
published by nodes:
§ Axes : Displays a set of Axes
§ Camera: Creates a new rendering window

from the perspective of a camera
§ Map : Displays a map on the ground plane
§ Pose : Draws a pose as an arrow or axes.
§ …..
§ Complete set:
http://wiki.ros.org/rviz/DisplayTypes

§ Each DisplayType uses specific message.
Axes => sensor_msgs/JointStates

9

[Powering the world’s Robots- ROS.ORG - RVIZ Camera type
http://wiki.ros.org/rviz/DisplayTypes/Camera]

Powerful ROS libraries
Ø Robot Description Language (URDF)

Describe a robot in a machine readable format.
URDF is an XML file describing following physical properties:
§ Main parts: cylinder, box, length, radius, …
§ Joints : continuous joints, prismatic joint, planar joint, Joint Dynamics

(friction, damping) , Inertia

Used by different tools for simulation, visualization and motion planning:
§ Rviz
§ Gazebo
§ Moveit
§ Stage

Ø Example of an URDF file:

<?xml version="1.0"?>
<robot name="multipleshapes">
<link name="base_link">

 <visual>
 <geometry>
 <cylinder length="0.6" radius="0.2"/>
 </geometry>
 </visual>
 </link>
<link name="right_leg">

 <visual>
 <geometry>
 <box size="0.6 .1 .2"/>
 </geometry>
 </visual>
 </link>
<joint name="base_to_right_leg" type="fixed">
<parent link="base_link"/>
<child link="right_leg"/>

 </joint>
</robot>

10

[ROS.ORG - Building a Visual Robot Model with URDF from Scratch
http://wiki.ros.org/urdf/Tutorials/Building a Visual Robot Model with URDF from Scratch

Powerful ROS 3rd party tools
§ URDF in Gazebo : URDF describes kinematic

and dynamic properties of a robot.

§ Not enough information for Gazebo for
accurate simulation : pose, friction, …

§ Simulation Description Format(SDF)
invented for simulation in Gazebo.

§ Stable, robust, and extensible format for
describing all aspects of robots, static and
dynamic objects, lighting, friction and even
physics.

§ SDF uses XML files like URDF.

Ø GAZEBO

§ Simulation environment and supports many
robots and sensors.

§ Developing and test a node without a physical
robot.

§ Deployment of after test with minimal change.
§ Start with ’gazebo’ command
§ ’gzserver’ :

§ Run the physics
§ Sensor data generation
§ Can be used without any GUI

§ ’gzclient’:
§ Provide a GUI for visualization of

simulation

11

Powerful ROS 3rd party tools
Ø GAZEBO

§ Converting URDF to SDF
§ Add tags and modify the URDF for example:

§ An <inertia> element within each <link> element
must be properly specified and configured.

§ Add a <gazebo> element for every <link>
§ Add a <gazebo> element for every <joint>
§ Add a <gazebo> element for the <robot> element
§ …
§ The complete instruction in Gazebo website.

Ø Part of an SDF as example
<camera name="head">

<horizontal_fov>1.3962634</horizontal_fov>

<clip>

<near>0.02</near>
<far>300</far>

</clip>
<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.007</stddev>
</noise>

</camera>
12

Powerful ROS 3rd party tools
Ø Moveit

§ The most widely used open-source
software for manipulation, motion
planning and analyzing of robot
interaction with environment.

§ Capabilities:
§ Collision checking
§ Integrated kinematics
§ Motion planning
§ Integrated perceptions about

environment
§ Execution and monitoring
§ Interactive

13

MoveIt in Rviz moving the ABB robot around - https://www.youtube.com/watch?v=0hS0XUOgYXk -
Pablo Negrete

Powerful ROS 3rd party tools
Ø OpenCV

§ The most powerful image processing library
§ Implemented in Python and C++.
§ Many functionalities out of box : Face

detectio, Object tracking ,motion analysis,
Feature detection and …

§ ROS have drivers for many sort of cameras:
§ openni_kinect for Microsoft kinect
§ gscam for most webcams
§ swissranger_camera
§ …

§ ROS uses sensor_msgs/Image message
and OpenCV need matrices for images.

§ Conversion by cv_bridge stack.

§ Conversion by cv_bridge : ready functions

cv_ptr = cv_bridge::toCvCopy(msg,
sensor_msgs::image_encodings::BGR8);

cv::circle(cv_ptr->image, cv::Point(50, 50),
10, CV_RGB(255,0,0));

14

[ROS.ORG- vision_opencv - http://wiki.ros.org/vision_opencv]

ROS and external hardware : Arduino
Ø Arduino

§ A microcontroller with powerful interface
library for different hardware.

§ Different I/O ports : Analog and digital
§ C-like language and syntax , Easy to

program. Many open source projects.

§ Implementation

§ ROS side : rosserial stack for serialization of message
over USB [3]

§ Arduino side: rosserial_arduino to create messages,
publish, subscribe. [3]

ros_lib UART

Arduino

USB rosserial_python
serial_node.pytty

ROS

#include <ros.h> <std_msgs/String.h>
ros::NodeHandle n; std_msgs::String msg;
ros::Publisher pub("/my_topic", &msg); int count = 0;
char data[100];
void setup(){

n.initNode();
n.advertise(pub);
}

void loop(){
sprintf(data, "Hello world %d", ++count);
msg.data = data;
pub.publish(&msg);
n.spinOnce();
delay(1000);

}
15

[1 - Arduino Products - https://www.arduino.cc/en/Main/Products]

[1] [2]

[3]

[2 – German robot - Opensource humanoid robot http://www.german-robot.com/]

http://wiki.ros.org/rosserial_arduino[3 – Wiki.ros.org - rosserial_arduinoTutorials - http://wiki.ros.org/rosserial_arduino/Tutorials]

How ROS works ?
Ø Nodes – Messages – Topics
§ Node : a process that uses ROS framework.

ROSCORE connects all nodes together and
provide connectivity.

ROSCORE NodeNode

§ Message: Standard definitions for
transferring data between nodes.

§ Topic: Mechanism of transferring data
between nodes.

§ Publisher: A node which produce message
and publish them.

§ Subscriber: A node which receives the
messages.

Ø Workflow:
1. Node A publish a message to a topic
2. All nodes which are subscribed to that

topic, will receive the message.

Node A :
Publisher

Topic :
Odometry

Node B:
subscriber

Node C:
subscriber

Ø Nodes commands:

§ rosrun package
executable

§ Roslaunch
package_name
file.launch

Ø Topiccommands:

#show list of messages inside
topic
§ Rostopic echo /topicName
§ Rostopic list
§ Rostopic info topicName

16

How ROS works ?
Ø Service-Client

The publish/subscribe model is very flexible but not enough for a
distributed system.

§ Service-Client is way to retrieve the data immediately instead
of waiting for a message to be published.

§ A node provides a service , the client node call the service by
sending request message.

§ Service-client => one-to-one
§ Topic- message => one-to-one, one-to-many, many-to-many

ROS Node

Service

ROS Node

Client

Request Response

17

[Mathwork -
https://de.mathworks.com/help/robotics/examples/
call-and-provide-ros-services.html]

Implementation example : Message-Topic
Ø Subscribing to a topic

Initialize rospy
NODE_NAME = 'localization'
import roslib; roslib.load_manifest(NODE_NAME)
import rospy

Import LaserScan message type
from nav_msgs.Odometry import *

Scan message handler
def odom_handler(msg):
this code is executed whenever a scan is published
[...]
Main function
def main():

rospy.init_node(NODE_NAME)
rospy.Subscriber("/odom", Odometry, odom_handler)
rospy.spin()

Topic name

This is a callback
function.
This is called whenever a
message of type
Odometry is received.

Callback function

18

Implementation example : Message-Topic
Ø Publishing to a topic

Initialize rospy
NODE_NAME = 'localization'
import roslib; roslib.load_manifest(NODE_NAME)
import rospy

Import standard String message type
from std_msgs.msg import *

Main function
def main():

pub = rospy.Publisher(“/scout/viewer”, String)
rospy.init_node(NODE_NAME)
msg = “Hello world”
pub.publish(String(msg))

Topic name

Publish function

Constructor call of
message

Ø Main benefits of message/topic system

§ capture messages in a file And replay them
later independently

§ Clear communication structure between side
tools and libraries. As pointed out for
example in RVIZ

19

Implementation example : Service-client
Ø Service
Initialize rospy
NODE_NAME = 'localization'
import roslib; roslib.load_manifest(NODE_NAME)
import rospy

Import standard String message type
from std_msgs.msg import *

Service handler
def handler(req):
this code is executed whenever the service is called
return LocalizationSrvResponse()

Main function
def main():

rospy.init_node(NODE_NAME)
rospy.Service("/scout/localization", LocalizationSrv, handler)
rospy.spin()

Service name

Service type

Service functionality

Ø client
Initialize rospy
NODE_NAME = ‘viewer '
import roslib; roslib.load_manifest(NODE_NAME)
import rospy

Import standard String message type
from std_msgs.msg import *

Main function
def main():

srv = rospy.ServiceProxy("/scout/localization",LocalizationSrv)
rospy.init_node(NODE_NAME)
response = srv(1, x, y, theta)

20

How nodes find each other : ROS Master
Ø One node is a ROS Master by running

roscore command on it.

Ø Keep track of publishers, subscribers and
topics.

Ø After nodes locate each other, they
communicate peer-to-peer.

Master

Camera
(Publisher)

Image Viewer

Publish on
Image topic

Master

Camera
(Publisher)

Image
Viewer

Subscribe
to image topic

Image

Master

Camera
(Publisher)

Image
Viewer

Image

topic

topic

21
[ROS.ORG – ROS Master - http://wiki.ros.org/Master]

Ø Steps:
Publisher informs the ROS master about the topic and start
publishing.
Subscriber informs the ROS master about the interested
topics

ROS master inform Publisher that who is interested , and
publisher start sending messages to them.

Unity: Introduction
Ø Unity is game engine used to created high qualified visual

scenes.
Ø Unity is visualization tool not a simulation.
Ø Unity is widely used for virtual reality (VR) tasks because:

§ Multi-platform : OSX, Windows, MAC, Android , ….
§ Powerful physics engine : gravity and collisions
§ Very GUI lets you drag and drop elements
§ Programming languages : C# and Javascript

22

[3- Unity Interface overview - Unity Official Tutorials - https://www.youtube.com/watch?v=5cPYpI6_yLs]

[1 – Deviant art – Angry birds logo - http://www.deviantart.com/morelikethis/421156366]

[1]

[3]

[2]

[2 – Geforde – Assassin's Creed Unity Graphics & Performance Guide - http://www.geforce.com/whats-new/guides/assassins-creed-unity-graphics-and-performance-guide]

Ø Unity interface

Unity with ROS
Ø Unity instead of RVIZ For visualization?
Not a good idea but possible.

§ ROS messages => events processed by
rendering loop in Unity.

§ liveliness of visualization is lost because
rendering should be fast.

§ Method : Connection between ROS-Unity by ROS
bridge.

§ Rosbrige : connection to outside world by JSON
API through web sockets

§ roslaunch rosbridge_server
rosbridge_websocket.launch

Creates a web socket server working on port 9090

§ Outside software call the server/port for
communication

Ros bridge

ROS

Web socket
server

Unity

API

rosserial_python
serial_node.py

Rendering
lib

JSON
Data

{"op": "subscribe",
"topic": "/clock",
"type": "rosgraph_msgs/Clock”}.

 {"op": "publish",
"topic": "/unity/joy",
"msg": msg}.

Ø JSON Data examples:

23

Stand alone Unity
Ø Graphical robot controller : The reverse of previous

project
§ Sending move commands from graphical robot to

physical robot
§ Input from environment by camera, Kinect , etc to

control graphical robot.

Ø Physical Robot => Arduino robotic frame
ware

Ø Calculation of position, etc => Unity

Ø Unity to Arduino Connection => USB

Ø Benefit : Control robot in Real time with
human interaction

24

[1 - The Robot Engine - Making The Unity 3D Game Engine Work For HRI
Christoph Bartneck, Marius Soucy, Kevin Fleuret, Eduardo B. Sandoval]

[1]

Conclusions

ØComplete OS for Robotics
ØNo equivalent
ØSuitable for industrial large

scale robotic projects

ØPowerful visualization tool
ØSome equivalents: Unreal, DirectX, …
ØSuitable for game, design and graphic

industry
ØTo some extend Human Robot Interaction

ØResearch subject : Combining
Unity3D and ROS for nice
environment simulation.

ØWhat about sensor data ?????

25

References:
§ ROS wiki - http://wiki.ros.org/
§ Powering the world’s Robots- ROS.ORG- http://www.ros.org/
§ The Robot Engine - Making The Unity 3D Game Engine Work For HRI - Christoph Bartneck,

Marius Soucy, Kevin Fleuret, Eduardo B. Sandoval
§ From ROS to Unity: leveraging robot and virtual environment middleware for immersive

teleoperation - R. Codd-Downey, P. Mojiri Forooshani, A. Speers, H. Wang and M. Jenkin
§ GAZEBO - Robot simulation made easy - http://gazebosim.org/
§ MoveIt! Motion Planning Framework - http://moveit.ros.org/
§ Unity3D - https://unity3d.com/
§ Mathwork - https://de.mathworks.com/help/robotics/examples/call-and-provide-ros-

services.html

26

